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E-08193 Bellaterra, Barcelona, Spain
(Received 3 August 2012; published 3 October 2012)

We propose a scheme to distribute graph states over quantum networks in the presence of noise in the channels
and in the operations. The protocol can be implemented efficiently for large graph sates of arbitrary (complex)
topology. We benchmark our scheme with two protocols where each connected component is prepared in a node
belonging to the component and subsequently distributed via quantum repeaters to the remaining connected
nodes. We show that the fidelity of the generated graphs can be written as the partition function of a classical
Ising-type Hamiltonian. We give exact expressions of the fidelity of the linear cluster and results for its decay
rate in random graphs with arbitrary (uncorrelated) degree distributions.
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I. INTRODUCTION

Quantum networks [1,2], where nodes with (limited)
quantum storage and processing power are coupled through
quantum channels, are becoming a focus of interest in quantum
information. The first motivation is to extend the paradigmatic
bipartite quantum communication applications (e.g., quantum
teleportation [3] or more prominently quantum key distribu-
tion [4]) to a multipartite setting, where such bipartite protocols
can be accomplished between arbitrary nodes of the network.
The possibility of networks with nontrivial topologies can give
rise to new phenomena and to applications that exploit the
multipartite correlations. Of course, this puts forward a big
variety of theoretical and technological challenges which can
be addressed in short term. Indeed the first steps have already
been taken towards a quantum network in a first realization
with two distant nodes that can store and interchange quantum
information in an efficient and reversible way [5]. Lastly,
such physical realizations are in principle scalable and hence
open the door to perform highly controllable experiments on
many-body phenomena, study multipartite entanglement [6],
and could eventually perform more complex tasks like some
implementation of the quantum Google page rank [7] or
general distributed quantum computations.

A central task in quantum networks is to devise strategies to
distribute entanglement among its nodes. Linear networks have
shown to be useful for long-distance bipartite entanglement
distribution by means of quantum repeaters [8] (see also
its measurement-based implementation [9]). However, the
study of entanglement distribution over higher dimensional
networks is in its infancy. Current results show that in
some scenarios the network topology can bring interesting
effects like entanglement percolation [10–16] that lead to new
approaches to the problem. This effect shows up in nonideal
(but still not fully realistic) scenarios or for some particular
network geometries.

In this paper we address the problem of distributing graph
states in the realistic scenario of noisy network channels and
a small, but non-negligible, amount of noise in the local
operations. Graph states [17] are a large family of multipartite
entangled states that, although they can be efficiently described
with relatively few parameters, have a rich variety of features.
For instance, they include paradigmatic states like GHZ,

cluster states, codewords of error-correcting codes [18], they
provide some novel quantum communication applications, like
secret entangled-state distribution [19], they are useful in the
study of nonlocality [20], and most importantly they include
states which are universal resources for measurement-based
quantum computing [21,22]. Current experiments [23,24] have
succeeded in the experimental implementation of GHZ and
cluster states up to 14 qubits [24].

Our goal here is to propose a protocol to create a large
graph using an underlying network of noisy channels. The
protocol should tolerate channels and operations with errors,
scale efficiently with the size of the network, and work for
any network topology, and in particular for complex networks.
Complex networks [25–27] underlie many natural [28,29],
social [30,31], and artificial systems [32,33] where different
parties interact. Their nontrivial structure is the source of
features, like the existence and shape of an important fraction
of highly connected nodes [34] and the tendency of nodes to
cluster together [30], that are often observed in real graphs and
have a deep impact in their performance. Complex networks
are of particular importance in communication infrastructures,
as most present telecommunication networks like the Internet
have a complex structure [32,33]. However, the rich and
intriguing properties of these type of networks are still
quite unexplored in the quantum setting (see nonetheless
[11,13,15,35,36]).

Channels linking separate nodes in a network are typically
noisy, and pose the main caveat to the creation of distributed
multipartite entangled states with high fidelity. To overcome
this, there exist bipartite [37,38] and multipartite [39–43]
entanglement purification protocols that allow one either to
generate highly purified Bell pairs, which can later be used
to teleport an arbitrary graph state, or to directly purify
the desired graph state (for a review, see Ref. [44]). These
recursive protocols tolerate a reasonable amount of noise
in local operations, but require a number of initial copies
that grows exponentially with the size of the state. Other
proposals do not use postselection, making the purification
efficient in terms of the size of the graph state, but come at
the expense of a stricter noise threshold [45]. In Ref. [46],
an entanglement pumping without postselection is also used
to obtain efficient purification when constructing the graph
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state edge by edge. In different approaches, the graph state
is created by a probabilistic growth using nondeterministic
entangling operations [47–51].

Here we investigate the advantages of generating and
purifying small GHZs that reproduce the local structure of the
network, and merge them in order to distribute a network-wide
graph state. Since GHZ have a fixed size which depends on
the degree of each node and is thus independent of the size
of the network, this protocol is efficient in the size while it
still maintains the high thresholds of the recurrence schemes.
One could also distribute different states, and create a large
graph state with a structure different from that of the network
recalling that, once the graph is created, local operations
[52,53] might be used to transform the graph state and reach
the desired structure. Note that different graph states might
be locally equivalent under these types of transformations, but
the differences in their structure can translate into a different
sensibility to noise in their generation. We benchmark this
protocol with two other protocols that generate high-fidelity
bipartite states between a node and the rest of the network,
which are then used to distribute a locally generated graph
state. We use the fidelity of the graph state as a figure of merit to
compare the three protocols. The fidelity decays exponentially
with the size of the network for a constant level of noise, and
hence we also use its decay rate. It turns out that both quantities
can be understood as the partition function and free energy
of a thermodynamic system, respectively, and thus standard
methods of statistical mechanics are readily used.

The paper is structured as follows. First, in Sec. II we
introduce graph states and the noise model we consider. In
Sec. III we present the three protocols and the two figures of
merit—the fidelity of the graph state and its decay rate—and
relate them with an analog partition function and free energy
of a thermodynamical system. Then, in Sec. IV we apply the
protocols to the creation of a linear cluster state, for which
we obtain exact results, and of a graph state associated with a
complex network. We conclude in Sec. V.

II. DEFINITIONS

A. Graph states

A graph G = {V (G),E(G)} is an ordered pair of sets: the set
V (G) of vertices, or nodes, and the set E(G) of edges, or links,
whose elements are (unordered) pairs of vertices and represent
the connections between them. The neighborhood of a vertex
u ∈ V (G) is the set of vertices connected to it, Nu(G) = {v :
(u,v) ∈ E(G)}, and the degree of that vertex is the number of
its neighbors, k = |Nu(G)|. If the graph is directed, then the
elements of E(G) are ordered, and (u,v) ∈ E(G) is a directed
edge from u to v. In this case, the incoming and outgoing
neighborhoods of u are N (in)

u (G) = {v : (v,u) ∈ E(G)} and
N (out)

u (G) = {v : (u,v) ∈ E(G)}, respectively.
A graph state [17] is a quantum state associated with a

graph G, where vertices correspond to qubits and edges to
interactions. A common description of graph states is the
stabilizer formalism. For a graph G, there are N = |V (G)|
stabilizer operators (one for each vertex u) defined as

KG
u = Xu

∏
v∈Nu(G)

Zv. (1)

Here X, Y , and Z are the Pauli operators and the subindex
denotes on which qubit they operate. A pure graph state |μ〉G,
with μ = {0,1}N , is a common eigenstate of all stabilizer
operators with

KG
u |μ〉G = (−1)μu |μ〉G ∀ u ∈ V,

where μu is the uth component of μ. The set {|μ〉G} form the
graph state basis. We will omit G when the graph is clear by
context.

An alternative description is by means of the interaction
picture, where |0〉G is created by preparing all qubits in the state
|+〉 and then applying a CPHASEu,v for every edge (u,v) ∈ E,

|0〉G =
∏

(u,v)∈E

CPHASEu,v|+〉⊗N .

Since Zu anticommutes with Ku and commutes with the rest
of Kv , v �= u, any graph-basis element can be expressed as

|μ〉G =
∏
u

(Zu)μu |0〉G.

Throughout this paper we consider mixed graph states
diagonal in the graph state basis, ρG = ∑

μ λμ|μ〉〈μ|. Any
mixed graph state can be brought to this form by local depo-
larization [40]. We will work, however, in the stabilizer basis.
Let us define K x = ∏

u∈V (Kv)xv , where x = (x1x2 · · · xN ) ∈
{0,1}N . Since {K x} form a complete set of commuting
observables, a diagonal graph state can be expressed as ρG =

1
2N

∑
x〈K x〉K x , where 〈K x〉 = ∑

μ λμ(−1)μ·x . The effect of
the Pauli operators on K x is

Zu K xZu = (−1)xu K x, (2)

Xu K xXu =
∏
v∈Nu

(−1)xv K x, (3)

Yu K xYu = (−1)xu

∏
v∈Nu

(−1)xv K x, (4)

so these unitaries map diagonal graph states into diagonal
graph states. A CPHASEu,v adds an edge between u and v, if
they were not connected, or removes it, if the edge already
existed. The effect on K x is

CPHASEu,v K xCPHASEu,v = K x(Zv)xu(Zu)xv . (5)

The action of Pauli measurements can also be easily
described in this formalism as a transformation of the graph (up
to some local unitaries). Measurement of Z simply disconnects
the measured qubit from the rest of the graph, while X and
Y transform the neighborhood of the measured qubit and
then disconnect it. In terms of the stabilizer operators, the
measurement of Zu commutes with all Kv , for v �= u, and
anticommutes with Ku. Thus,

[I + (−1)mZu]K x[I + (−1)mZu] = [I + (−1)mZu]K xδ0,xu
,

(6)

where m = {0,1} labels the measurement outcome {+1,−1},
respectively. After tracing out qubit u, the new stabilizer is

(−1)m·∑v∈Nu
xv K ′

xδ0,xu
, (7)

where the new K ′
x corresponds to a new graph G′ obtained

from G by removing vertex u and its attached edges. The
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spurious phase factor in Eq. (7) can be canceled by applying
a unitary (

∏
v∈Nu

Zv)m. Similarly, measurements of Xu or Yu

also result in the disconnection of the measured qubit, but
in these cases the remaining graph is transformed by local
complementations of the neighborhood of u, as described in
Ref. [17]. We will be more explicit in the concrete cases where
we apply these measurements.

Our figure of merit will be given in terms of the fidelity,
which for a graph-diagonal state can be written as

FG
N = G〈0|ρG|0〉G = λ0 = 1

2N

∑
x

〈
KG

x

〉
. (8)

B. Network and noise model

We consider a network where nodes are spatially separated.
Some of the nodes are connected by a link, which we model
as a noisy depolarizing channel on one qubit with error
parameter pc,

T (u)
c = (1 − pc)[I ] + pc

4

3∑
i=0

[
σ

(u)
i

]
. (9)

The square brackets [A] denote that A acts on both sides of
the state (i.e., [A]ρ = AρA†), and σi are I , X, Y , Z for i =
0,1,2,3, respectively. A Pauli measurement on u is modeled
as a perfect measurement preceded by a depolarizing channel
T

(u)
1 with error probability p1 on that qubit,

T
(u)

1 = (1 − p1)[I ] + p1

4

3∑
i=0

[
σ

(u)
i

]
. (10)

A noisy two-qubit gate (e.g., a CPHASE or a CNOT) on qubits
u and v is modeled as an ideal gate followed by the two-qubit
depolarizing channel on u,v with error parameter p2,

T
(u,v)

2 = (1 − p2)[I ] + p2

16

3∑
i,j=0

[
σ

(u)
i ⊗ σ

(v)
j

]
. (11)

Gates can only be applied locally (i.e., on qubits within the
same node).

In the stabilizer basis, the effect of each noise source
is easily tracked: It multiplies each stabilizer element by a
coefficient, and keeps the graph state in diagonal form. Let us
consider, for example, the effect of noise T

(u,v)
2 on K x . The

first part of Eq. (11), that is proportional to 1 − p2, does not
affect K x . Each term in the second part, that is proportional to
p2, will at most induce a change of sign. Using Eqs. (2)–(4)
one easily finds that the sign change can only occur if K x acts
nontrivially on u or v (i.e., if exists at least one xa = 1 for
a ∈ u ∪ v ∪ Nu ∪ Nv). In addition one sees that half of the
16 terms in the sum induce a sign change which cancel the
contribution of the other half. Hence, the noise T

(u,v)
2 does not

alter K x unless x has support in u or v, in which case it gets
multiplied by a factor (1 − p2):

T
(u,v)

2 (K x) = (1 − p2)θ(xu,xv,xNu ,xNv ) K x, (12)

where θ (x) ≡ 1 − δ(0,x) and xNu
= (xv1 · · · xvk

) for all va ∈
Nu. Noise T

(u)
1 behaves similarly. In this case, the sign is

changed with probability p1/2 unless xu = 0 and
⊕

a xa = 0
for a ∈ Nu, so the multiplying coefficient is

(1 − p1)θ(xu,
⊕

v∈Nu
xv ). (13)

Note thus that these noise sources affect the qubits on which
the gates act, plus their neighbors.

Finally let us point out that we do not associate any noise
with the local “correcting” unitaries performed in order to
bring the postmeasurement states to a standard graph form.
We refer to these unitaries in our protocols to simplify book-
keeping, but their action can be pushed forward (or commuted)
until the end of the protocol, and hence the resulting state is
exactly equivalent as a resource of entanglement.

III. PROTOCOLS

We propose a protocol to distribute a graph state with the
structure of a general quantum communication network, of
arbitrary topology, associated with graph G. Noise pc in the
communication channels is considered to be relatively high,
so some sort of purification or error correction is in order. The
protocol uses the structure of the network to distribute several
copies of small subgraphs between neighbors, and purifies
them by means of multipartite purification. These subgraphs
are GHZ states, which are associated with a star graph with
a central node of degree j , connected to j leaves of degree
1. In order to benchmark our protocol, we also consider two
reference protocols that distribute bipartite states between a
central node, which locally creates the desired graph state,
and the rest of the network. The bipartite states are then used
to teleport the locally created graph state. Since this central
node may not be directly connected to the rest of the network,
quantum repeaters [8] are used to establish purified bipartite
states between this node and all the network’s nodes.

In all cases, we consider the same multipartite purification
protocol for bicolorable graph states described in Ref. [40].
The noise threshold of this purification scheme depends on the
degree of the central qubit of the state that is purified, and goes
from ≈0.06 for a bipartite state (i.e., a GHZ with central degree
1) to ≈0.02 for a GHZ of central degree 9. This poses a limit in
the maximum degree of a network for which the protocols can
be used. Hence, we work under the assumption that the errors in
the local operations are low—as compared to the (finite) degree
of the subgraphs, jp � 1—and that the channel noise can be
significant, but also low enough so that the minimum threshold
fidelity required for the purification protocol to succeed can be
attained. At first order in p1 = p2 = p, the output state fixed
point of this purification scheme is given by (see Appendix A):〈

Kxa

a

∏
b∈Na

K
xb

b

〉
= 1 − p

[
xa

⌈∑
b xb

2

⌉
+xa(j + 1)

]
, (14)

where a is the central node and b the leaves of the GHZ, j is
the number of leaves and the overline in xa represents the bit
complement, xa = xa ⊕ 1.

Note that the extensive use of quantum repeaters in
the first two protocols renders them extremely inefficient.
Nevertheless, we will find that the performance in terms of
attainable fidelity is still comparable to that of our more
efficient subgraph protocol.
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A. Bipartite A protocol

In the first protocol, purified, but still noisy, entangled
states are created between a central node and all the others by
means of quantum repeaters. This central node then teleports a
locally generated state to all the other nodes. For simplicity, in
protocols A and B we assume that the central node is sending
all qubits through purified channels, including his own. This
adds a source of noise that would not be strictly necessary, but
its effect is small for large enough networks. In cases, like com-
plex networks, where the network is not necessarily connected,
it is understood that there is a central node for each connected
component distributing the corresponding graph state.

The local state ρG, which mimics the structure of the
network, is created by initializing N qubits in the state
stabilized by X and then applying CPHASEs between neighbors.
Then, the noisy Bell states between the central node and all
the others are used to teleport the corresponding qubits (see
Fig. 1). We label qubits in the local graph as u ∈ V (G). For
each node in the network, there is a bipartite state ρgu

of two
qubits, ua,ub ∈ V (gu) and one edge (ua,ub) ∈ E(gu). Qubit ua

belongs to the central node, while ub is in the corresponding
node in the network. In order to account for the errors in the
teleportation Bell measurement, we implement it by a CPHASE

on (u,ua) followed by X measurements on u and ua .
Without taking noise into account, the state before telepor-

tation is

ρG ⊗
⊗

u∈V (G)

ρgu
, (15)

with

ρG = 1

2N

∑
x

KG
x and ρgu

= 1

4

∑
xua ,xub

(
Kgu

ua

)xua
(
Kgu

ub

)xub .

FIG. 1. (Color online) Bipartite A protocol. The upper green
(gray) area represents the “central” node, where the local graph state
with the structure of the network is generated. The lower green (gray)
circles are nodes in the network. Small, dark gray dots correspond
to qubits, and lines connect neighbors. Rectangles (in red) indicate
Bell measurements involved in the teleportation of the local graph
states, which are implemented as CPHASEs between u and ua and X

measurements at u, ua .

The graphs gu correspond to the bipartite states with qubits ua

and ub used for teleportation (i.e., K
gu
ua

= Xua
Zub

). The action
of the CPHASEu,ua

affects only the stabilizers KG
u → KG

u Zua

and K
gu
ua

→ K
gu
ua

Zu. The measurement of Xu anticommutes
with all KG

v , v ∈ Nu(G), and with K
gu
ua

Zu, while that of Xua

anticommutes only with KG
u Zua

and K
gu
ub

. Thus, each term
changes to [

1 + (−1)mua Xua

]
[1 + (−1)muXu]K x,(

Zua

)xu
(
Kgu

ua
Zu

)xua
(
Kgu

ub

)xub , (16)

δ0,xua ⊕⊕
v∈Nu

xv
δ0,xu⊕xub

,

where mu and mua
are the measurement outcomes. Tracing out

qubits u and ua and correcting the state with (Zub
)mu(Xub

)mua

we obtain K ′
xδ0,xua ⊕⊕

v∈Nu
xv

δ0,xu⊕xub
, with K ′

x associated with
a new graph G′ where vertex u has been substituted by vertex
ub. Teleportation of all local qubits results in the desired
distributed state.

Noise can now be introduced as the multiplicative factors in
front of the stabilizer elements of Eq. (15). Here, the order of
the CPHASE gates used to generate the local graph matters, as
qubits receive noise from gates performed at neighbors which
are already connected to them. There is thus a noise (1 − p1)xu

corresponding to the preparation of each node in Xu, and a
(1 − p2)θ(xu,xv,xÑu

,xÑv
) for each edge in the local state, where

the tilde in Ñu labels that we consider the neighborhood of
u at the moment the CPHASEu,v is performed. Additionally,
and using that xua

= ⊕
v∈Nu

xv and xub
= xu, in each telepor-

tation the CPHASE introduces noise as (1 − p2)θ(xu,xNu ), and
the measurements as (1 − p1)xu+

⊕
v∈Nu

xv . Finally, there is a
〈(Kgu

ua
)
⊕

v∈Nu
xv (Kgu

ub
)xu〉 term from the purified Bell states. This

results in a final distributed state ρ = 1
2N

∑
x〈K x〉K x with

〈K x〉 =
∏
u∈V

[
(1 − p1)xu

〈(
Kgu

ua

)⊕
v∈Nu

xv
(
Kgu

ub

)xu
〉

× (1 − p2)θ(xu,xNu )(1 − p1)xu+
⊕

v∈Nu
xv

]
×

∏̃
(u,v)∈E

(1 − p2)θ(xu,xv,xÑu
,xÑv

), (17)

where the tilde over � states that the edges are introduced
in a certain order. An explicit expression for the Bell state
correlators for the postselection purification protocol at first
order in p can be obtained from Eq. (14)〈(

Kua

)xua
(
Kub

)xub
〉 ∼ 1 − (

x̄ua
xub

+ 2xua

)
p. (18)

B. Bipartite B protocol

The previous strategy can be improved by directly con-
necting the local ends of Bell pairs by means of CPHASEs,
and then teleporting the local graph state performing only one
X measurement per node—instead of the various sources of
noise induced by the Bell measurement (CPHASE and two X

measurements). The initial state is now
⊗

u∈V (G) ρgu
, where

qubits are labeled as u if they belong to the central node and
ub if they are in the distributed nodes (see Fig. 2). The sources
of noise are as follows: the purity of Bell pairs, CPHASEs used
in the preparation of the local state, and the measurement
involved in each teleportation. As in the previous case, the
order of CPHASEs is important: Each contributes to a noise
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FIG. 2. (Color online) Bipartite B protocol. The upper green
(gray) area represents the “central” node, where the local graph
state with the structure of the network is generated. The lower
green (gray) circles are nodes in the network. Small, dark gray
dots correspond to qubits, and lines connect neighbors. Dashed lines,
corresponding to the edges of the local graph, are created after solid
lines, corresponding to the distributed bipartite states. Squares (in
red) indicate X measurements used to teleport the local graph states.

with (1 − p2)θ(xu,xv,xub
,xvb

,xÑu
,xÑv

). Note that the CPHASEs are
performed on qubits that are already connected to nodes in
the network and thus affect the distributed qubits ub. The
calculation is similar as before and results in a final distributed
state with correlators,

〈K x〉=
∏
u∈V

[〈(
Kgu

u

)xu
(
Kgu

ub

)⊕
v∈Nu

xv
〉
(1 − p1)xu

]
×

∏̃
(u,v)∈E

(1 − p2)θ(xu,xv,
⊕

w∈Nu
xw,

⊕
w∈Nv

xw,xÑu
,xÑv

).

(19)

C. Purify subgraph and merge

In this strategy, subgraph states of small size (N inde-
pendent) are distributed and purified, and then interconnected
locally at each node to form the desired structure.

The protocol follows two steps (see Fig. 3). To each node of
degree k we assign an outgoing neighborhood, with j nodes,
and an incoming neighborhood, with i nodes (k = j + i).
First, each node prepares a GHZ of size j + 1. A GHZ graph
state with j + 1 qubits is associated with a star graph gu

(i.e., a graph with a central node and j external nodes, called
leaves). Then, each qubit corresponding to a leaf of the GHZ
is sent to one of the outgoing neighboring nodes through the
depolarizing channels. Several copies of this distributed state
are created and then purified using the bicolorable graph state
protocol of Ref. [39]. The final purified subgraph state with
central qubit u is

ρu = 1

2j

∑
xu,xN (out)

u

〈(
Kgu

u

)xu
∏

uw∈N (out)
u

(
Kgu

uw

)xuw

〉

× (
Kgu

u

)xu
∏

uw∈N (out)
u

(
Kgu

uw

)xuw , (20)

FIG. 3. (Color online) Subgraph purification and connection
protocol. Green (gray) circles are nodes in the network. Nodes on
the right are the outgoing neighborhood of u, while those on the left
are the incoming neighborhood. Small, dark gray dots correspond to
qubits, and lines connect neighbors. Lines and squares in red (gray,
in the central node) indicate CPHASEs and measurements involved in
the connection of subgraphs.

where the correlators of the fixed point of the purification
scheme are given in Eq. (14). Here uw denotes the leaf qubit
that has been sent to w ∈ N (out)

u (G). At the same time, each
node receives i = k − j leaves corresponding to the GHZ
states created at its incoming neighborhood.

In the second step, each node connects the central qubits
of their GHZ state with the leaves they have received. The
connection is made by performing a CPHASE between the two
qubits u and vu and a Y measurement of the received qubit vu.
The effect of the Y measurement is to add an edge between the
two central nodes u and v and destroy the measured qubit vu.

The action on the stabilizers can be seen in a single
connection example between a central qubit u of a subgraph
and a leaf qubit vu of an incoming subgraph (see Fig. 3).
We focus on the stabilizer elements (Kgv

v )xv (Kgv
vu

)xvu (Kgu
u )xu ,

as all the others remain unchanged. The action of a CPHASE

between u and vu is K
gv
vu

→ K
gv
vu

Zu and K
gu
u → K

gu
u Zvu

. The
measurement of Yvu

anticommutes with the new stabilizer
operators at v, vu, and u, so each term changes to[

1 + (−1)mYvu

](
Kgv

v

)xv
(
Kgv

vu
Zu

)xvu
(
Kgu

u Zvu

)xu
,

(21)
δ0,xv⊕xvu ⊕xu

.

Tracing out vu and correcting the state depending on the mea-
surement outcome m with exp[(−1)mi π

4 Zv] exp[(−1)mi π
4 Zu],

we obtain

(K ′
v)xv

(
Kgu

u Zv

)xu
δ0,xv⊕xvu⊕xu

,

where K ′
v is the stabilizer of v with qubit vu changed to u.

Noise added by the measurement enters as (1 − p1)xu⊕xv ,
where we used Eq. (13) together with xvu

= xu ⊕ xv . Noise
by a CPHASE between one of the incoming leaves vu and u

adds (1 − p2)
θ(xu,xv,xN (out)

u
,xÑ (in)

u
)
, where Ñ (in)

u is the incoming
neighborhood that has already been connected to u.

Finally, note that if a node has j = 0 it does not need to
prepare any GHZ state. In this case, one of the incoming leaves
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is used as the qubit to which all the other leaves are connected.
If there are no incoming leaves, then the node is isolated (and
is thus prepared in the state stabilized by X). This means that
the contribution of the GHZ distribution and purification at a
node u is

〈
K gu

x

〉=
⎧⎨⎩

〈(
K

gu
u

)xu
∏

w∈N (out)
u

(
K

gu
uw

)xu⊕xw
〉

if j > 0,

1 if j = 0, i > 0,

(1 − p1)xu if j = i = 0.

All in all, the final correlators for the subgraph protocol can
be written as

〈K x〉 =
∏
u∈V

{〈
K gu

x

〉 ∏
va∈N ′

u

[
(1 − p1)xu⊕xva

× (1 − p2)θ(xu,xNout
u

,xv1 ,...,xva )]}
. (22)

Here, N ′
u denotes the incoming neighborhood N in

u if j > 0, or
the incoming neighborhood minus the first incoming neighbor,
N in

u \v1, in the case j = 0 where the first neighbor v1 is used
as the qubit to which all remaining edges are connected.

D. Fidelity

The fidelity for a distributed graph G is FG
N = 1

2N

∑
x〈K G

x 〉,
and is in general hard to calculate. In order to simplify the
analysis here we will use a single error parameter p = p1 = p2

—most of the results presented here can be extended to more
general dependencies between the CPHASE and measurement
errors, which strongly depend on the physical implementation.
With this particular parametrization the effect of errors enter
as factors,

(1 − p)h(x) = e−βh(x), (23)

where we have defined β = − ln(1 − p). To first order in p,
the correlators of the purified graph states (14) can also be
written in the same form,

1 − h(x)p ∼ e−ph(x) ∼ e−βh(x). (24)

Hence, the correlators of the generated graph state can be
written as 〈K x〉 = exp[−βHG(x)], where HG(x) is the sum
of the different noise terms h(x). The fidelity thus resembles
the partition function of a system with Hamiltonian HG(x)
and inverse temperature β:

FG
N = 1

2N

∑
x

e−βHG(x). (25)

The “Hamiltonian” HG(x) can be expressed as the sum of
many-body n-local Hamiltonians of the form,

θ (x1,x2, . . . ,xn) = 1 − x1 x2 · · · xn, (26)

xu ⊕ xv = xuxv + xuxv, (27)

xu

⌈∑j

b=1 xb

2

⌉
= 1

2

(
xu

j∑
b=1

xb + xu

j⊕
b=1

xb

)
. (28)

The last term
⊕j

b=1 xb in Eq. (28) is a j -body interaction
term. By recursively using Eq. (27), this term can be seen
to be equal to the sum over all index permutations of

∑
a odd x1 · · · xaxa+1 · · · xj , that is, we have rephrased our

problem of computing the fidelity of a distributed large graph
state as that of computing the thermal properties of a classical
many-body Ising-type system, where the indices x take the role
of classic spins. The corresponding Hamiltonian will inherit
the topology of the underlying graph and its precise expression
will depend on the graph-growth protocol used.

We are interested in the rate at which FG
N decays,

βf G
N = − 1

N
ln FG

N , (29)

where Nf G
N is the analog of the free energy of the system. A

good reason to study this quantity is that in statistical systems
such as a complex network (which is modeled as an ensemble
of graphs, each associated with a probability—see Sec. IV B),
the partition function (fidelity) in itself is not an extensive
quantity, while the free energy is typically extensive and self-
averaging (see, e.g., Ref. [54], p. 188).

We can further exploit the statistical physics analogy and
apply the known methods and understanding to compute the
rate at which the fidelity decays for the different proposed
protocols. We are interested in a regime where the noise in the
operations is low, which corresponds to the high temperature
limit. In addition, in the cases under study, each spin (or
node) is effectively coupled to several spins, either as nearest-
or second-nearest neighbors. These are conditions for which
mean-field approximation is very well suited: Eqs. (26)–(28)
can be linearized using the standard mean-field approximation
to express the Hamiltonian as the sum of a constant term plus
linear terms in xu. For this purpose we take xu → s + δu (and
xu → 1 − s − δu) where s is the value of the mean field and
δu are the arguably small fluctuations of xu around its mean
value. Keeping only the linear terms in the fluctuations, the
different terms present in the Hamiltonian become

θ (x1,x2, . . . ,xn) = 1 − (1 − s)n + (1 − s)n−1
n∑

a=1

δa, (30)

xu ⊕ xv = 2s(1 − s) + (1 − 2s)(δu + δv), (31)

xu

⌈∑
b xb

2

⌉

= 1 − s

2

(
js +

j∑
b=1

δb

)
− δu

2
js + 1 − s

2

×
{

1

2
[1 − (1 − 2s)j ] + (1 − 2s)j−1

j∑
b=1

δb

}

− δu

2

1

2
[1 − (1 − 2s)j ]. (32)

With this linearization, the new mean-field Hamiltonian
takes the form H MF = ∑

u Au + ∑
u Buxu, where Au and Bu

are functions of s. Hence, the sum over x (i.e., “configurations)
in the fidelity can now be carried out with ease,

F = 1

2N

∑
x

∏
u∈V

e−βAue−βBxu

=
∏
u∈V

e−βAue−βB/2

(
cosh

βBu

2

)
, (33)
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and the decay rate becomes βf MF, with

f MF = 1

N

∑
u

Au + 1

N

∑
u

Bu

2
− 1

βN

∑
u

ln cosh
βBu

2
.

(34)

The value of s is found by adding an artificial linear term
to the Hamiltonian (playing the role of an external magnetic
field), changing Bu → Bu + ξ , and requiring consistency in
the definition,

s = 〈xu〉 = ∂f MF

∂ξ

∣∣∣∣
ξ→0

.

One is hence left with the trascendental equation for s,

s = 1

2
− 1

2N

∑
u

tanh
βBu

2
. (35)

Its solution s∗ can be substituted back in the expression for f MF

(34) to obtain the desired result. In the cases of interest here,
Bu is some polynomial which remains bounded for all values
of s ∈ [0,1]. Hence, to leading order in p we can approximate
tanh βBu

2 ≈ pBu

2 , arriving at

s ≈ 1
2 − 1

2 pBu|s=1/2 , (36)

for small enough p.

IV. NETWORK EXAMPLES

A. Closed linear cluster

We first study the case of a one-dimensional network, in
which a linear cluster state is created. This case is remarkable
because we can compute the exact fidelity for any cluster size.
For symmetry, we consider a closed linear cluster state, where
all nodes have degree 2. The order of the CPHASEs in the
creation of the local graph in bipartite A and B protocols, and
the size of subgraphs in protocol subgraphs, gives different
results for the fidelity. For simplicity, in bipartite A and B,
we consider CPHASEs applied to successive nodes. Except for
the noise of the first gate (which affects only two nodes)
and of the last one (which affects four nodes), all the gates
contribute to the noise of three nodes. Each of the correlators
is thus

〈K x〉 �
∏
u∈V

(1 − p1)xu (1 − p1)xu+xu−1⊕xu+1

× (1 − p2)2θ(xu−1,xu,xu+1)
〈(
Kgu

ua

)xu−1⊕xu+1
(
Kgu

ub

)xu
〉
(37)

for the bipartite A protocol and

〈K x〉 �
∏
u∈V

(1 − p1)xu(1 − p2)θ(xu−1,xu,xu+1,xu+2)

× 〈(
Kgu

u

)xu
(
Kgu

ub

)xu−1⊕xu+1
〉

(38)

for the bipartite B protocol. Recall that the correlator of the
purified subgraphs is given in Eq. (14).

The subgraph protocol, on the other hand, depends on
the size of the subgraphs. There are two extreme strategies,
depicted in Fig. 4: create subgraphs of degree 1, and connect
them successively (S1), or create subgraphs of degree 2 every

FIG. 4. (Color online) Subgraph protocol in a linear cluster. (Top)
S1, using subgraphs of degree 1. (Bottom) S2, using subgraphs of
degree 2.

second node, and connect them at their common neighbor
(S2). One could also adopt an intermediate strategy, in which
the degree of each GHZ is selected at random, resulting in a
mix of subgraphs of degrees 1 and 2 —its performance, which
will not be reported here, falls in between the two extreme
strategies. In the first case (S1), Eq. (22) reads

〈K x〉 =
∏
u∈V

(1 − p2)θ(xu,xu+1,xu+2)(1 − p1)xu⊕xu+1

× 〈(
Kgu

u

)xu
(
Kgu

uu+1

)xu⊕xu+1
〉
, (39)

while in the second (S2) it is

〈K x〉 =
∏

u∈Veven

(1 − p2)θ(xu,xu+1,xu+2)(1 − p1)xu+1⊕xu+2

× 〈(
Kgu

u

)xu
(
Kgu

uu−1

)xu⊕xu−1
(
Kgu

uu+1

)xu+1
〉
. (40)

Note that in the latter the product is over u = 2,4, · · · ∈ Veven.
Let us now define a domain of x = (x1x2 · · · xN ) as a

sequence (xuxu+1 · · · xu+l) where all xv , for v = u, . . . ,u + l,
have the same value (either 0 or 1), and where xu−1 and xu+l+1

have a different value. We can differentiate between a sequence
of zeros or ones. Taking Eq. (39) as an example, one can
observe that except for the term (1 − p2), 〈K x〉 factorizes into
expected values in each component of ones, as the exponents
of the noise terms can be different from zero if at least one
of the bits x is equal to one, and the terms are uncorrelated
with those on different domains. Considering all noise terms,
Eq. (39) can be expressed as a function of the total number
of ones in the sequence x, n = |x|; the number c1 of domains
of only one zero; and the number of domains c2∗ with two or
more zeros:

〈K x〉 = (1 − p2)c1+2c2∗ +n(1 − p1)2(c1+c2∗ )

× 〈
Kgu

uv

〉c1+c2∗ 〈
Kgu

u

〉n−c1−c2∗ 〈
Kgu

u Kgu

uv

〉c1+c2∗
. (41)

The fidelity is then,

FN = 1

2N

∑
c1,c2∗ ,n

g(c1,c2∗ ,n,N ) 〈K x(c1,c2∗ ,n)〉 ,

where g(c1,c2∗ ,n,N ) is the number of 〈K x(c1,c2∗ ,n)〉 elements
with these parameters in a graph of N vertices. This sum
can be computed exactly by turning to generating functions.
The function generating g(c1,c2∗ ,n,N ) is G(x,y1,y2,z) =∑

g(c1,c2∗ ,n,N )xny
c1
1 y

c2∗
2 zN . We derive its closed form in

Appendix B, which reads

G = 1 − xz2(1 − y1 + 2(y1 − y2)z)
1 − (1 + x)z + x(1 − y1)z2 + x(y1 − y2)z3

. (42)

The fidelity for a state of size N is then

F = 1

2N

1

N !
∂N
z G(x,y1,y2,z), (43)
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FIG. 5. Fidelity of a linear cluster of size N = 10 created by
bipartite A (top left) and B (top right), and subgraph S1 (bottom left)
and S2 (bottom right) protocols, as a function of noise parameters p1

and p2. Lines correspond to fidelities 2−1,2−2, . . . ,2−9, starting from
the bottom left corner.

evaluated at

x = (1 − p2)
〈
Kgu

u

〉
, (44)

y1 = (1 − p2)(1 − p1)2〈Kgu

uv

〉 〈
Kgu

u

〉−1〈
Kgu

u Kgu

uv

〉
, (45)

y2 = (1 − p2)2(1 − p1)2
〈
K

gu
uv

〉 〈
K

gu
u

〉−1〈
K

gu
u K

gu
uv

〉
, (46)

and z = 0. The factorization of 〈Kx〉 for subgraph S2 and
bipartite protocols depend on slightly different parameters, and
the corresponding generating functions can also be computed
(see Appendix B).

We will first consider the ideal case of perfect purification,
and later tackle the noisy case. In the ideal scenario, we can
substitute all subgraph correlators by 1 and Eq. (43) gives the
exact fidelity for all values of p1 and p2 (here taken to be
independent parameters). The fidelities of the four protocols
are plotted in Fig. 5, the best protocol being S2. The fidelity
decays at first exponentially in the error probabilities but as
probability of error increases the decay becomes slower and
the fidelity reaches a nonzero minimum value. In general,
the fidelity is more sensible to noise p2, as this is the one
corresponding to CPHASEs, which affects more qubits. The
dependence on p1 varies a lot from one protocol to another.
This is reflected in the asymptotic minimum value: For p2 = 0
and p1 = 1 (i.e., perfect two-qubit gates but maximally noisy
single-qubit measurements), the fidelity in the S1 and S2
protocols is higher than the minimum value 2−N . This happens
when the exponent of (1 − p1)f (x) in Eqs. (39) and (40) is zero
(i.e., the corresponding K x is not affected by the noise). Of
course, this is true in all protocols for the identity, x = 0, but
in the S1 it is also true for x = 1, so the minimum fidelity is
2−N+1. In protocol S2 the effect is even bigger, as the product

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
fN

FIG. 6. (Color online) Rescaled decay rate fN of a closed linear
cluster of N = 10 nodes with perfect purification. (From upper to
lower lines) Bipartite A (blue, square), bipartite B (red, diamonds),
subgraph S1 (black, circles), and subgraph S2 (black, triangles). Dots
correspond to the mean-field approximation, lines to the exact result
using generating functions.

is over Veven and hence any x where pairs x2n+1 ⊕ x2n+2 = 0
for n = 0, . . . ,N/2 − 1 translates in a K x that is not affected
by this noise. In this case, the minimum fidelity is 2−N/2.

To further compare the four protocols, in Fig. 6 we plot
the corresponding decay exponent fN for p = p1 = p2. As
expected, the behavior of the bipartite A protocol is the most
sensible to noise, because it involves more operations and
measurements. One can also observe that S1 and bipartite B
have a similar decay rate. Note that, except for the use of a
central node in bipartite B, while S1 protocol is distributed,
both use bipartite resources, and in particular both implement
the same number of CPHASEs and measurements. For this
reason, noise comes in a very similar way, the main difference
being that CPHASEs in bipartite B affect a larger number of
qubits, and therefore the associated θ function has a larger
support in x. This holds even if one considers nonperfect
purification, as both protocols rely on bipartite purification.
On the other hand, S2 performs the merging of subgraphs at
every second node, so it has much fewer sources of noise. In
fact, for p → 0 its decay rate is exactly half the one of S1.

We now compare these exact results with the mean-field
approximation. As we introduced in the previous section,
〈K x〉 ∼ exp[−βH (x)]. For the subgraph S1 protocol, H (x) =∑

u∈V hu(x), with

hu(x) = θ (xu,xu+1,xu+2) + xu ⊕ xu+1. (47)

Recall that we are still considering perfect purification. Sub-
stituting xu → s + δu and keeping only linear terms in δu, this
takes the form of hMF

u (x) = au + buxu + cuxu+1 + duxu+2,
with

au = (5 − 2s)s2, (48)

bu = 2 − 4s + s2, (49)

cu = 2 − 4s + s2, (50)

du = (1 − s)2. (51)
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All qubits u are equivalent, so the coefficients a,b,c,d are
the same for every node and the total Hamiltonian is H MF =
AN + B

∑
u xu, with A = a and B = b + c + d. Hence, the

fidelity in the mean-field approximation is

F MF
N = e−βANe−βBN/2

(
cosh

βB

2

)N

, (52)

and the decay rate,

f MF = A + B

2
− 1

β
ln cosh

βB

2
. (53)

The same approximation can be made for the other
protocols. The local Hamiltonian of subgraph S2 is

hu(x) = θ (xu,xu+1,xu+2) + xu+1 ⊕ xu+2. (54)

Note that, in this case, the total Hamiltonian is the sum for u

even. In the case of bipartite A and B, the local Hamiltonians
are

hu(x) = 2xu + xu−1 ⊕ xu+1 + 2θ (xu−1,xu,xu+1), (55)

and

hu(x) = xu + θ (xu−1,xu,xu+1,xu+2), (56)

respectively. The mean-field results are shown in Fig. 6
together with the exact result. The agreement is remarkably
good, especially considering that this is a one-dimensional
network configuration. We observe that the decay rate has a
linear dependence in p but soon higher order (nonlinear) terms
start to kick in. Here, we have studied and plotted the solution
for a wide range of p. This has been done for completeness
and to check the validity of the mean-field approximation,
but recall that the aim in this paper is solely to compute
the decay rate to leading order in p. The reason being that
in realistic scenarios p will be strongly limited by threshold
values required for subgraph purification.

We now consider the realistic scenario following the same
procedure as before but taking into account the corrections
due to the noisy purified subgraphs. This can be done by
approximating the correlators by their linear correction around
unity (14). Consequently, an additional term (24) must be
added to the local Hamiltonians (47), (54), (55), and (56)
for each of the different protocols. It is important to bear in
mind that all subsequent results have to be taken consistently
up to leading order in p. This leading order is the one that
enters in the features that we seek: the linear dependence of
the fidelity decay rate around p ∼ 0 (for arbitrarily large N ).
From Eqs. (34) and (35) it is immediate to see that at this order
the whole contribution to the decay rate is given by the first
two terms in (34) evaluated at s = 1/2, that is,

fN = A + B

2

∣∣∣∣
s=1/2

= 1

N2N

∑
x

H (x). (57)

The second equality is straightforward to get from the
definitions of A and B, and it states that in this regime (low p)
the decay rate is dominated by the exponents of the typical
sequences x. The expected value of H (x) (over sequences x)
can be easily carried out since xu are independent variables of
mean 1/2 and it leads to fidelities that decay as pfNN with fN
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FIG. 7. (Color online) Fidelity decay rate pfN of a closed linear
cluster of N = 100 nodes. (From upper to lower lines) Bipartite
A (blue, squares), bipartite B (red, circles), subgraph S1 (black,
diamonds), and subgraph S2 (black, triangles). Solid lines correspond
to the generating function result, using the first-order approximation
of the purification scheme of Eq. (14). Dashed lines are the first-order
result of Eq. (57). Dots correspond to the mean-field approximation.

equal to 9/2 = 4.5, 43/16 ≈ 2.7, 21/8 ≈ 2.6, and 13/8 ≈ 1.6
for bipartite A and B and subgraphs S1 and S2, respectively.

These coincide with the decay rates obtained by the
generating function method in the same limit, where in
Eqs. (44)–(46) we substitute 〈Kgu

u 〉 = 〈Kgu
u K

gu
uv

〉 = 1 − 2p

and 〈Kgu
uv

〉c1+c2∗ = 1 − p. The results (see Fig. 7) show that
the subgraph protocols provide output fidelities comparable, if
not better, than those given by the protocols based on channel
purification. This is remarkable keeping in mind that purifying
channels is much more demanding in terms of resources and
efficiency.

As we mentioned at the beginning of the section, the order
of the CPHASEs in the bipartite protocols can give different
results, but the decay rates do not change much. For example,
if the CHPASEs are first applied to every second edge, and then
to the remaining edges, the decay rate is 143/32 ≈ 4.5 for
bipartite A, while it does not change for bipartite B.

B. Complex networks

Now we study the behavior of the protocols in complex
networks. Complex networks are characterized by statistical
properties, and can be modeled as an ensemble of graphs G,
with a probability P (G) assigned to every graph G in the
ensemble. A property O of a complex network is defined as its
average over the ensemble, O = ∑

G∈G P (G)OG (note that the
overline here stands for the ensemble average). Some of these
properties are self-averaging, meaning that for large systems
(in the limit N → ∞) a property of a given graph realization
G is the same as the average over different realizations of
G ∈ G [54,55]. As we discussed in Sec. III D, the free energy
is typically self-averaging, and is the one we use here as a
figure of merit.

We consider random networks with uncorrelated degree
distribution pk , which defines the ensemble. This family of
networks includes the Erdős-Rényi model (when pk is a
Poisson distribution) as well as exponential and scale-free
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networks [34]. It is useful to express the degree distribution by
its generating function gp(z) = ∑

k pkz
k . Related to pk is the

probability that, following a random edge, we arrive at a vertex
with k other edges. This probability is rk = (k + 1)pk+1/〈k〉,
and k is called the excess degree. It is generated by gr (x) =
g′

p(x)/〈k〉. The edges in the network are undirected, but
the creation of the graph state via the subgraph protocol is
“directed-like,” as each node can have incoming and outgoing
neighbors. Thus, we also consider the degree distribution pi,j ,
where i is the in-degree and j the out-degree. This distribution
defines the implementation of the protocol. For example, in the
linear cluster, S1 was defined by p1,1 = 1 for all nodes, and S2
by p0,2 = 1 and p2,0 = 1 at even and odd nodes, respectively.
The distribution pi,j is constrained by

∑
i,j (j − i)pi,j = 0,

which means that 〈i〉 = 〈j 〉 = 〈k〉/2, but note that, in general,
it can be correlated (pi,j �= pipj ). The function that generates
pi,j is gp(x,y) = ∑

i,j pi,j x
iyj .

In the case of complex networks, we are interested in the
average fN = ∑

G∈G P (G)f G
N over the ensemble. We expect

that, for large N , fN goes to f due to self-averaging. In order
to average fN we have to compute

fN = − 1

βN

∑
G∈G

P (G) ln
1

2N

∑
x

e−βHG(x),

which corresponds to a quenched average, where the disorder
corresponding to the network topology, given by P (G), is
frozen with respect to that of the correlation operator index x.
Computing this quantity is in general an extremely challenging
problem, especially in our case that we have structured disorder
and k-body interaction between the spins. Nevertheless, we are
interested in the particular regime of high temperatures (low p)
far away from critical phenomena, long-range correlations, and
other difficulties that appear at low temperatures. In this regime
we can directly use (57)

f = 1

N

∑
G∈G

P (G)
1

2N

∑
x

HG(x) = 1

N

1

2N

∑
x

HG(x). (58)

The Hamiltonians for the bipartite protocols are of the form,

HG(x) =
∑
u∈V

hu(x) +
∑̃

(u,v)∈E

hu,v(x). (59)

In bipartite A, the local Hamiltonians are

hu(x) = xu + xu

⊕
v∈Nu

xv + 2
⊕
v∈Nu

xv

+ θ
(
xu,xNu

) + xu +
⊕
v∈Nu

xv, (60)

and

hu,v(x) = θ
(
xu,xv,xÑu

,xÑv

)
, (61)

while in bipartite B,

hu(x) = xu

⊕
v∈Nu

xv + 2xu + xu, (62)

and

hu,v(x) = θ

⎛⎝xu,xv,
⊕
w∈Nu

xw,
⊕
w∈Nv

xw,xÑu
,xÑv

⎞⎠ . (63)

As before, the tilde over the summatory and the neighborhood
stands for the order in which CPHASEs are performed in the
local graph. We can substitute it by the expected effect of an
edge, which depends on the number of edges already connected
to nodes u and v. This number is nu + nv with probability

1
2ku+kv

( ku

nu
)( kv

nv
). Here, ku and kv are the excess degrees of the

vertices in edge (u,v), so the average of the network ensemble
has to be performed using probabilities rku

and rkv
:

hu,v(x) = 1

2N

∑
x

∑
kukv

rku
rkv

hu,v(x). (64)

In bipartite A, the average effect of each of these edges is 1 −
1
4 [gr (3/4)]2. In bipartite B, it is 1 − 1

16 [gr (1/2) + gr (3/4)]2.
The terms in hu(x), on the other hand, depend directly on the
degree, and the average is performed over pk:

hu(x) = 1

2N

∑
x

∑
k

pkhu(x). (65)

Considering all these terms, and that the summation over V

contains N elements, while that over E contains 〈k〉N/2, the
decay rates are

fN = 15

4
− 5

4
gp(0) − 1

2
gp(1/2) + 〈k〉

2

(
1 − 1

4
[gr (3/4)]2

)
,

(66)

for bipartite A and

fN = 7

4
− 1

4
gp(0) + 〈k〉

2

(
1 − 1

16
[gr (3/4) + gr (1/4)]2

)
,

(67)

for bipartite B.
In the subgraph protocol, where HG(x) = ∑

u∈V hu(x), the
local Hamiltonian is

hu(x) =
[
xu

⌈∑
w∈N out

u
xw

2

⌉
+ xu(j (u) + 1)

]
(1 − δ0,j (u) )

+ xuδ0,i(u)δ0,j (u) +
∑

va∈N ′
u

[
θ
(
xu,xN out

u
,xv1 , . . . ,xva

)
+ xu ⊕ xva

]
. (68)

Here N ′
u is defined as in Eq. (22). In this case, to average the

Hamiltonian we have to take into account the directed degree
probability pij , h(x) = ∑

ij pijh(x), giving

fN = 5

8
+ 17〈k〉

16
+ 7

4
gp(0,0) − 15

8
gp(1,0)

− 1

2
[gp(1,1/2) − gp(1/2,1/2)]. (69)

These results are valid for any network with uncorrelated
degree distribution pk . To compare the behavior of the three
protocols we consider the Erdős-Rényi model [56–58], which
is the maximally random graph under the only constraint
that the mean degree 〈k〉 is fixed. The degrees in this model
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FIG. 8. (Color online) Fidelity decay rate pfN in an Erdős-Rényi
network of mean degree 〈k〉 = 2 (top) and 4 (bottom). Bipartite
A (blue, circles), bipartite B (red, squares), and subgraphs (black,
diamonds). Bipartite A (upper, blue), subgraphs (middle, black),
and bipartite B (lower, red). Dots are the average over 10 random
realizations of networks with N = 100, randomly sampling 1000
configurations of x. Dashed lines are the results at first order in p

[Eqs. (66)–(68)].

follow a Poisson distribution, so gp(x) = gr (x) = e〈k〉(x−1),
and for 〈k〉 > 1 there is a giant connected component of size
comparable to the size of the network. The degree distribution
pk is fixed by the network model, but in the subgraph
protocol one can play with the distribution pi,j (as long as∑

i,j pi,j δi+j,k = pk). For simplicity, here we consider that
the direction of each edge is selected at random,

pi,j = pi+j

2i+j

(
i + j

i

)
, (70)

and hence gp(x,y) = e〈k〉( x+y

2 −1). Figure 8 plots pfN for the
three protocols, showing that the best protocol depends on the
mean degree of the network. It also shows an average over
10 random realizations of an Erdős-Rényi graph of N = 100,
approximating the fidelity by the average of a random sample
of 1000 configurations of x, F ∼ 1

1000

∑
xsample

〈K xsample〉. This
approximation is valid in the low p regime, where the fidelity
is dominated by the typical values of x. We observe that,
in the Erdős-Rényi, the subgraph protocol with random edge
direction give a better (lower) decay rate fN for 〈k〉 < 2.8,
while above that bipartite B beats it. This stronger dependence

of the subgraph protocol on the mean degree of the network—
compare the term in 〈k〉 in Eq. (68) versus those on Eqs. (66)
and (67), which however have a bigger constant term—is in
part due to the higher number of noise sources, which depends
on the number of edges. Indeed, in the bipartite protocols
only the initial CPHASEs depend on the number of edges of
the graph, while in the subgraph protocol every merging of
two subgraphs includes a CPHASE and a measurement. These
mergings depend on the number of incoming edges, which
could be lowered by considering a strategy different from the
simpler one considered here where the direction of edges is
selected at random. Instead, one could favor, for example, that
the leaves of the network have an incoming edge with higher
probability than an outgoing edge. Here it is important that
we are comparing protocols which have drastically different
requirements in terms of resources, so a slight benefit of the
bipartite protocols in terms of fidelity does not rule out the use
of subgraph protocols.

V. CONCLUSIONS

We have proposed a protocol to generate a graph state that
spans a distributed network of any topology, in the presence
of noise in the communication channels and in the local
quantum operations performed in the network nodes. The
protocol distributes and purifies small subgraphs, that are then
merged to mimic the network structure. This allows the use of
multipartite purification for small systems (that depend on the
degree of the nodes, rather than on the size of the network),
which makes the protocol scale efficiently. We have compared
this protocol, which uses multipartite state purification and
graph merging, to two other protocols that rely on channel
purification (quantum repeaters).

We have benchmarked the protocols using as a figure
of merit the fidelity of the generated graph state, or, more
precisely, its decay rate, as the size of the network increases.
Using generating function methods we have been able to
compute exactly the fidelity for linear clusters of arbitrary
size, allowing for a direct comparison with the approximate
methods we develop. We have rephrased the problem of
computing the effects of noise in the operations in terms of
the thermal properties of a classical spin system, with the
same interaction patterns as the underlying graph. Indeed, the
fidelity itself can be seen as the analog of the partition function
of such a system, while its decay rate plays the role of the
free energy. The well-known methods from statistical physics,
such as the mean-field approximation, can be used to study its
behavior.

We have also studied the three protocols in networks with
a complex structure. These complex networks are present in
many real-world systems, and are of particular importance
in the description of communication networks. The subgraph
protocol is especially motivated to be implementable in
networks of this kind, as it is highly adaptable to any network
topology and it only requires the nodes to have local knowledge
of the network.

Our results shows that the protocol using subgraph purifi-
cation and merging is comparable, and in some cases even
better, than those which rely on bipartite states. This is quite
remarkable, as the latter rely on quantum repeaters and require
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MARTÍ CUQUET AND JOHN CALSAMIGLIA PHYSICAL REVIEW A 86, 042304 (2012)

much more resources. In the complex networks case, the
multipartite protocol could be possibly enhanced by devising
an optimized strategy via the directed degree distribution pi,j .
As an example, in networks with many nodes of degree 1,
one should go for a directed degree distribution in which
those nodes are as much as possible the receivers of GHZ
states, instead of the senders, so less connections would need
to be made. In other words, one should tend to p1,0 as high as
possible (compared to p0,1). In addition, in nodes of too high
degree, the protocol might fail due to the noise threshold in
the multipartite purification, which depends on the size of the
GHZs (and thus, on the degree of the network nodes). In this
case, one could always separate the node in two (or more) and
treat them as independent nodes, each creating and distributing
a subgraph among a subset of the neighborhood. This might
prove useful in networks with a scale-free degree distribution,
which have a long tail and a high presence of hubs.

It remains an open question to relate the decay in fidelity
with the actual use one can make of graph states. Clearly, there
is a regime where the fidelity is exponentially small, but a finite
decay rate still signatures valuable resources. It is important
to emphasize that for the three protocols, as well as for all the
networks under study, we have not only computed this decay
rate, but also completely characterized the noise graph states
that emerge from the protocol. For a particular application,
having full knowledge of the generated graph gives probably
a closer picture of the generated resource.
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APPENDIX A: MULTIPARTITE PURIFICATION
PROTOCOL

The recursive protocol [40] is an entanglement purification
protocol for multipartite, two-colorable graph states, which
has also been extended to general graph states [41]. It operates
on two identical copies,

ρ1 ⊗ ρ2 = 1

22N

∑
x1,x2

〈
K (1)

x1

〉 〈
K (2)

x2

〉
K (1)

x1
K (2)

x2
,

of a two-colorable graph state of size N (with colors A and
B), and consists of two subprotocols (P1 and P2), each of
which purifies one of the two colors. Here K (i)

xi is a stabilizer
element of state ρi . In each subprotocol, information about ρ1

is transferred to ρ2. Then, ρ1 is kept or discarded depending
on the outcomes of measurements on ρ2. In P1, a CNOT2→1 is
applied to every node in A, and a CNOT1→2 to every node in
B. This transforms the state to

1

22N

∑
x1,x2

〈
K (1)

x1

〉 〈
K (2)

x2

〉
K (A1)

a1⊕a2
K (B1)

b1
K (A2)

a2
K (B2)

b2⊕b1
,

where a and b are the elements of x that correspond to colors
A and B. The stabilizer K

(A1)
a1⊕a2

corresponds to qubits of

ρ1 in color A, and the modulo 2 summation of the index
a1 ⊕ a2 is made elementwise. To keep notation short, we
contract K (A1)

a1⊕a2
K (B1)

b2
= K (1)

a1⊕a2,b2
, where the first subindex

corresponds to color A and the second to color B. Then, every
node in ρ2 is measured: X in nodes of color A (outcomes
ξ ) and Z in nodes of color B (outcomes ζ ). This gives the
(unnormalized) state,∑

x1,x2

(−1)(ξ⊕⊕
ζ )·a2

〈
K (1)

x1

〉 〈
K (2)

x2

〉
K (1)

a1⊕a2,b1
δ0,b2⊕b1

=
∑
x1,a2

(−1)(ξ⊕⊕
ζ )·a2

〈
K (1)

a1,b1

〉 〈
K (2)

a2,b1

〉
K (1)

a1⊕a2,b1
,

where ξ ⊕ ⊕
ζ stands for ξu ⊕ ⊕

v∈Nu
ζv for all u ∈ A. The

state is selected if ξ ⊕ ⊕
ζ = 0. Summing over all the possible

outcomes, the final (postselected) state after P1 is

1

2N |A|
∑
x1,a2

〈
K (1)

a1
K (1)

b1

〉
1

〈
K (2)

a2
K (2)

b1

〉
2 K (A1)

a1⊕a2
K (B1)

b1
.

P2 is equivalent, with colors A and B interchanged.
For our protocol, we need the fixed point for a GHZ of size

j + 1, with a central node colored as A and j leaves colored
as B (|A| = 1 and |B| = j ). Noise can come from CNOTs as
1 − p2 and from measurements in state ρ2 as 1 − p1:

〈Ka K b〉(P1) = 1

2

1∑
a2=0

〈
K

(1)
a⊕a2

K (1)
b

〉 〈
K (2)

a2
K (2)

b

〉
× (1 − p2)θ(a,a2,

⊕
b∈B b)

∏
b∈B

(1 − p2)θ(a,a2,b)

× (1 − p1)a2
∏
b∈B

(1 − p1)a2 ,

〈Ka K b〉(P2) = 1

2d

1∑
b2=0

〈
K (1)

a K (1)
b⊕b2

〉 〈
K (2)

a K (2)
b2

〉
× (1 − p2)θ(a,

⊕
b∈B b2,

⊕
b∈B b)

∏
b∈B

(1 − p2)θ(a,b2,b)

× (1 − p1)
⊕

b∈B b2
∏
b∈B

(1 − p1)b2 .

We now consider p1 = p2 = p and approximate 〈Ka K b〉
at first order in p. Let the unnormalized 〈Ka K b〉(P1) ∼ 1 −
β̃a,|b|p and 〈Ka K b〉(P2) ∼ 1 − α̃a,|b|p. Composing P1 and P2
we can find the fixed point at first order in p. In P1, each β̃a,|b|
equals α̃0,|b| + α̃1,|b| plus a constant term:

β̃0,|b| = α0,|b| + α1,|b| + j + 1 +
⌈ |b|

2

⌉
,

β̃1,|b| = α0,|b| + α1,|b| + 3

2
(j + 1).

These terms are normalized dividing them by 〈1〉 = 〈K0 K 0〉,
so the normalized first-order coefficients for P1 read βa,|b| =
β̃a,|b| − β̃0,0. Similarly, for P2,

α̃0,|b| = 1

2j

∑
b2

(
β0,b⊕b2 + β0,b2

) + j + 1 +
⌈ |b|

2

⌉
,

α̃1,|b| = 1

2j

∑
b2

(
β1,b⊕b2 + β1,b2

) + 3

2
(j + 1).
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After normalization (dividing by 〈K0 K 0〉),

〈K0 K b〉 ∼ 1 −
⌈ |b|

2

⌉
, 〈K1 K b〉 ∼ 1 − (j + 1)p.

The fidelity is

F ∼ 1 − 1

2j+1

j∑
b=0

(
j

b

) [⌈
b

2

⌉
+ (j + 1)

]
p

= 1 − 5

8
(j + 1)p.

APPENDIX B: GENERATING FUNCTIONS FOR THE
DOMAINS IN THE CLOSED LINEAR CLUSTER STATE

In this appendix we derive the generating functions from
which the fidelity of a closed linear cluster can be derived using
Eq. (43). In all cases, errors from CPHASEs, measurements, and
multipartite purification are tracked by error parameters p2, p1,
and p, respectively.

1. Subgraph S1: g(n,c1,c2∗,N)

In a closed linear chain, nodes can have values “0” or “1”.
In this chain, a domain is a sequence of adjacent nodes with
the same value (0 or 1), surrounded by nodes of different
value. In a chain of N nodes, let n be the total number
of ones, c1 the number of domains of ones preceded by a
domain of only a zero, and c2∗ the number of domains of ones
preceded by a domain of at least two zeros(c1 + c2∗ is the total
number of domains of ones). Recall Eq. (41), which gives
the correlator of the protocol subgraph S1 in terms of n, c1,
and c2∗ :

〈K x〉 = (1 − p2)c1+2c2∗ +n(1 − p1)2(c1+c2∗ )

× 〈
Kgu

uv

〉c1+c2∗ 〈
Kgu

u

〉n−c1−c2∗ 〈
Kgu

u Kgu

uv

〉c1+c2∗
.

Then, g(n,c1,c2∗ ,N ) is the number of different configurations
of that chain with given parameters, and

G(x,y1,y2,z) =
∑

g(n,c1,c2,N )xny
c1
1 y

c2∗
2 zN

its generating function. Each variable x, y1, y2, and z “counts”
the number of ones, domains of one zero, domains of two or
more zeros, and the total size, respectively. The function G

can be found by joining simpler distributions. We can think
of the linear chain as a construction of domains of zeros and
ones joined together. Consider the set of domains of zeros,
{0,00,000, . . . }, each domain of a given size appearing only
once. The number of domains of size N in this set is dN = 1,
which is generated by

D(z) =
∑
n�1

dNzN = z

1 − z
.

We can differentiate between the set of domains of only a
zero, {0}, and that of two or more zeros, {00,000, . . . }. In this
case, the generating functions are, respectively, z and D(z) − z.
The set of domains of ones, {1,11,111, . . . }, is generated
by the same function, but here each element contributes to
the total size of the chain and to the number of ones. Its
generating function is thus D(xz). The function generating
the set of pairs of domains, the first of zeros and the second of
ones, is

P ≡ P (x,y1,y2,z) = {y1z + y2[D(z) − z]}D(xz).

The function for all possible combinations of pairs of domains
of zeros and ones (in order) is

1

1 − P
= 1 + {y1z + y2 [D(z) − z]} D(xz)

1 − P
.

Here, the first element (1) counts the case where there are no
pairs at all, and the second, P/(1 − P ), to that where there is
at least one pair. We can now add nothing at all, a possible
domain of zeros at the end, a possible domain of ones at the
beginning, or both. The final generating function is then

G =
{

1 + [y1z + y2 (D(z) − z)]
D(xz)

1 − P

}
[1 + D(xz) + P ]

+
[

1 + y2D(z)D(xz)
1

1 − P

]
D(z).

Note that when we added a domain of zeros [the term
with D(z)], we changed the variable y1 for y2, to take into
account that the domain of zeros is now of size greater
than one (because we are considering a closed linear chain).
Simplifying, we obtain

G = 1 − xz2[1 − y1 + 2(y1 − y2)z]

1 − (1 + x)z + x(1 − y1)z2 + x(y1 − y2)z3
. (B1)

2. Bipartite B: g(n,c1,c2,c3∗,N)

In the bipartite B protocol, the correlator depends on similar
parameters, but here we have to differentiate between the
number of domains of zeros with one element (c1), two
elements (c2), and three or more elements (c3∗ ):

〈K x〉 = (1 − p1)n(1 − p2)c1+2c2+3c3∗ +n

× (1 − 2p)n(1 − p)2c2+2c3∗ . (B2)

This can be achieved by a small modification of the previous
generating function. Now,

P ≡ P (x,y1,y2,y3,z)

= {y1z + y2z
2 + y3[D(z) − z − z2]}D(xz),

and

G = {1 + xz2[−1 + y1 − 2y1z + 2y2z + 3(−y2 + y3)z2]}
{1 + z[−1 + x(−1 + z{1 + y1(−1 + z) + z[y2(−1 + z) − y3z]})]} . (B3)
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3. Bipartite A: g(n,c1,c2∗,c̄2∗,N)

In bipartite A, we also need to count the number c̄2∗ of
domains of two or more ones. The correlator in this case
reads

〈K x〉 = (1 − p1)2n+2c2∗ +2c̄2∗ (1 − p2)2c1+4c2∗ +2n

×(1 − 2p)2c2∗ +2c̄2∗ (1 − p)n−2c̄2∗ . (B4)

We count c̄2∗ using variable w2, and differentiating between
the sets {1} and {11,111, . . . }, which are generated by xz and
D(xz) − xz, respectively. The extended function generating
the set of pairs of domains is now

P ≡ P (x,y1,y2,w2,z)

= {y1z + y2[D(z) − z]}, {xz + w2[D(xz) − xz]}.
Proceeding as in the previous case, we obtain

G = 1 + xz2(−1 + y1 − 2y1z + 2y2z) + (−1 + w2)x2z3[y1(2 − 3z) + 3y2z]

1 + z[−1 + x(−1 + z{1 + [1 + (−1 + w2)xz][y1(−1 + z) − y2z]})] . (B5)

4. Subgraphs S2: g(n01,n10,n11,cl,cr,N)

In the subgraph S2 protocol, the sum is performed over even
nodes. In this case, it is convenient to express x as a sequence
of elements 00, 01, 10, and 11 (the first digit corresponding to
an odd node, and the second to an even node). Each 01, 10, and
11 contribute to one CPHASE noise, as well as each domain of
00 which is preceded by a 01 or a 11. Moreover, each 01 and 10
contribute to one Y measurement noise. Finally, each 01 and
11 contribute to a 1 − 3p noise of the purified subgraph, each
10 to a 1 − p and each domain of 00 followed by a 10 or an 11
also to a 1 − p. Thus, we need the number of configurations
with n01, n10, and n11 number of 01, 10, and 11 elements, and
cl and cr domains of 00 preceded by 01 or 11 and followed by
10 or 11, respectively. The correlator is

〈K x〉 = (1 − p2)n01+n10+n11+cl (1 − p1)n01+n10

× (1 − 3p)n01+n11 (1 − p)n10+cr . (B6)

Now, each element contributes with z2 to the size of the
chain. The domains {00,00 00, . . . } are generated by z2

1−z2 . A
domain made of elements 01, 10, and 11 of any size (including

0) is generated by

1

1 − (x01 + x10 + x11)z2
,

and one which ends (or begins) with, say, element 01 (and thus
is of size at least 2) is generated by

1

1 − (x01 + x10 + x11)z2
x01z

2.

Proceeding as in the previous cases, the generating function is

G =
[

1 + (x01 + x10 + x11)z2

1 − (x01 + x10 + x11)z2
+ z2

1 − z2
+ G

]
1

1 − P
,

(B7)

where P is{
(x01yl + x10yr + x11ylyr )z2 + 1

1 − (x01 + x10 + x11)z2
z4

×[(x01 + x11)yl + x10] [(x10 + x11)yr + x01]

}
z2

1 − z2
.
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[55] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond (World Scientific Publishing, Singapore, 1987).
[56] E. N. Gilbert, The Annals of Mathematical Statistics 30, 1141

(1959).
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